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Temporal fluctuations in the phase of waves transmitted through a dynamic, strongly scattering,
mesoscopic sample are investigated using ultrasonic waves, and compared with theoretical predictions
based on circular Gaussian statistics. The fundamental role of phase in diffusing acoustic wave
spectroscopy is revealed, and phase statistics are also shown to provide a sensitive and accurate way to
probe scatterer motions at both short and long time scales.
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For all waves, phase is irrefutably the most fundamental
property. On macroscopic scales, however, phase is
randomized by multiple scattering or obscured by decoher-
ence. It is now generally accepted that a mesoscopic re-
gime exists where wave phenomena persist on even
hydrodynamic scales. Mesoscopic fluctuations can some-
times be long range and non-Gaussian [1,2]. The universal
conductance fluctuations are best known, originally dis-
covered for electrons [3], and later also observed with
visible light [4] and microwaves [5]. In the optics of soft
condensed matter, the existence of dynamic mesoscopic
fluctuations has led to a new technique called diffusing
wave spectroscopy (DWS) [6]. In the acoustic counterpart,
diffusing acoustic wave spectroscopy (DAWS) [7], the
fluctuations of the scattered wave field are measured di-
rectly to probe the dynamics of disordered media. In
seismology, the closely related technique of coda wave
interferometry [8] is extending the range of applications
being studied.

For acoustic, seismic, or radio waves, the phase can be
easily extracted. While many applications, including inter-
ferometric techniques such as InSAR [9], make use of
phase for precise measurements, the phase of multiply
scattered waves has often been neglected, since it is gen-
erally more challenging to extract useful information from
phase in multiple-scattering systems. Mesoscopic studies
have revealed the fundamental relation of phase to the
screening of zeros of random fields [10], but most of the
literature has focused on quantities such as the probability
distribution functions of intensity, transmission, or con-
ductance [1], and does not address the phase directly.
Recent studies with microwaves [11], infrared light [12],
and terahertz radiation [13] have explored frequency cor-
relations of the phase. In this Letter, we study time-
dependent phase fluctuations of ultrasound in a dynamic,
strongly scattering medium, and examine the statistics of
both the wrapped and cumulative phase evolution. This
combination of theory and experiment reveals a deeper

insight into the mesoscopic physics of multiply scattered
waves, and explicitly shows the relationship between the
average phase evolution of a typical multiple-scattering
path—a crucial concept in D(A)WS modeling [6,7]—
and the measured phase evolution of the transmitted waves.
We also find that phase statistics can sometimes provide a
more accurate method of measuring the dynamics than the
field autocorrelation method that is used in D(A)WS. In
our materials, the temporal phase fluctuations are too
complex for traditional Doppler ultrasound analysis. This
Letter may be viewed as a way of overcoming these
complications.

The ability of ultrasonic piezoelectric transducers to
detect the wave field allows the phase of the scattered
ultrasound to be measured directly. In our experiments,
we used a pulsed technique, so that the phase of multiply
scattered waves along paths spanning a narrow range of
path lengths could be investigated. For most of the experi-
ments, the sample was a 12.2-mm-thick fluidized bed,
containing 1-mm-diameter glass spheres suspended at a
volume fraction of 40% by an upward flowing solution of
60% glycerol and 40% water. A miniature hydrophone was
used to capture the field transmitted through the sample in
a single near-field speckle spot. The input pulses had a
central frequency of 2.25 MHz (� � 0:71 mm), were
roughly 5 periods wide, and were repeated every 2 ms.
Since the beads were in constant motion, the scattered
signal was different for each input pulse, allowing the
phase to be measured as a function of the evolution time
T of the sample and the propagation time t of the waves.
Since the sample hardly changed during the propagation
time, the system appeared ‘‘frozen’’ to the individual
pulses. At a fixed lapse time after each pulse input pulse,
a short segment (about 4.5 periods) of the transmitted
waveform was recorded. Using a simple numerical tech-
nique [14], the wrapped phase ��t� 2 ���:�� and the
amplitude A�t�> 0 in each segment were determined as
a function of time from the digitized field data. This
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technique is equivalent to taking a Hilbert transform to
produce the complex analytic signal A�t� expfi�!t�
��t��g, where ! is the central frequency of the pulse. To
achieve good statistical accuracy, 10 sets of 8300 consecu-
tive pulses were recorded.

In order to gain insight into the temporal phase fluctua-
tions of the multiply scattered waves, we examine the
statistics of the phase evolution and its derivatives with
time. The wrapped phase probability distribution P���,
which gives the probability of measuring a phase � at
acoustic propagation time t and evolution time T, was
found experimentally to be constant within statistical error,
consistent with a complex random wave field described by
circular Gaussian statistics (CGS) [15]. We have extended
the theory of the phase within CGS [11] to deal with the
statistics of phase evolution, which involves the change in
phase, or phase shift, with time. The joint probability
distribution of N complex acoustic fields recorded at evo-
lution times Ti of the sample is,

 P� T1
; . . . ;  TN � �

1

�N detC
exp

�
�
XN
i;j

 �TiC
�1
ij  Tj

�
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where Cij � h Ti 
�
Tj
i is the covariance matrix [15]. It is

convenient to use normalized fields so that Cii � 1. Then,
the off-diagonal elements of Cij are equal to the field
autocorrelation function used in DAWS [7]: Ci�j �

g1�Ti � Tj�. For N � 2, two wave amplitudes and one
phase can be integrated out from Eq. (1) at constant phase
difference ����� � ��T � �� ���T�. If we rewrap the
phase difference into the interval ���:��, we get for the
probability distribution of phase evolution
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where F 	 g1 cos��. As the scatterers move for time �,
the acoustic fields  T and  T�� decorrelate. This process
strongly affects the statistics of the temporal phase evolu-
tion �����, with P������� finally approaching the flat
distribution for large time differences (g1 � 0).

The phase dynamics can be described quantitatively in
terms of the variance of the change in phase along one
typical path taken by the waves, h��2

path���i, which we call
simply the ‘‘path phase variance’’ [16]. The DAWS auto-
correlation function [7] is related directly to this variance
according to g1��� 
 exp�� 1

2 h��
2
path���i�. From Eq. (2)

we can establish that the path phase variance is signifi-
cantly different from the wrapped phase shift variance
h��2���i. The latter is associated with the superposition
of the waves from all paths at the detector that, for the
phase, implies a highly nonlinear transformation. Yet, a
universal relation h��2i � f�h��2

pathi� is predicted, with
no parameter that depends on the details of the dynamics.
We exploit this universality below to find h��2

path���i
directly from the wrapped phase shift variance. Quite

surprisingly, we will see later that unwrapping the phase
destroys this universality.

The path phase variance can be related to the particle
motion according to [7] h��2

path���i ’
1
3nk

2h�r2
rel��; ‘

��i.
Here k is the wave vector, n is the average number of
scattering events, and h�r2

rel��; ‘
��i is the relative mean

square displacement of two scatterers separated by the
transport mean free path ‘� of the sound. At early times
we expect ballistic motion, h�r2

rel���i � h�V
2
reli�

2, and it is
convenient to write h��2

path���i �
1
3 �

2=�2
DAWS, where

�DAWS � 1=
����������������������
nk2h�V2

reli
q

is the characteristic time scale
beyond which the particle motion destroys the correlation
of the acoustic field.

At short times and small ��, Eq. (2) simplifies to
P���� � 1

2 h��
2
pathi=�h��

2
pathi ���2�3=2, showing di-

rectly its dependence on h��2
path���i, and hence

h�r2
rel��; ‘

��i. This expression has the same form as the
probability distribution of the phase derivative �0 with
evolution time, P��0� � 1

2Q=�Q��02�3=2, where Q �
lim�!0h��2

path���i=�
2 � �3�2

DAWS�
�1.

Figure 1 shows our experimental data for P���� at five
values of �, along with fits to Eq. (2). The early times show
a narrow peak centered at �� � 0, which broadens as the
particles move farther from their original positions. As �
gets larger, the probability distribution is indeed seen to
approach the flat distribution [Fig. 1(d)]. The agreement
between theory and experiment is excellent over the entire
range of phases and times, and for P���� spanning nearly
7 orders of magnitude. The fits provide accurate measure-
ments of h��2

path���i and hence of the relative mean square

FIG. 1 (color online). The observed probability distribution of
the wrapped phase evolution at five different time intervals �
(symbols) and the corresponding theoretical predictions (solid
curves). The dashed curves in (a) and (b) are the small �, small
�� predictions (see text). The only fitting parameter [via the
dependence of P���� on g1] is the path phase variance h��2

pathi

at time �, which gives �DAWS � 89 ms. For these data, the
number of scattering events n � 34� 2. Note the wide variation
in vertical scales from (a) to (d).
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displacement of the particles. Alternatively, by using the
universal relationship h��2i � f�h��2

pathi� [Fig. 2(a)],
h��2

path���i can directly be determined from the measured
variance h��2i—a simpler procedure than fitting P����.
Both methods work well as long as h��2i is less than its
upper limit of�2=3, when the phase difference distribution
has become flat. In Fig. 2(b), h�r2

reli measured from the
wrapped phase fluctuations and the conventional field au-
tocorrelation are compared. The agreement between the
two methods is excellent, giving direct experimental con-
firmation of the universal relationship shown by the solid
curve in Fig. 2(a).

In cases where the noise in the measured signals affects
the amplitude rather than the phase (e.g., gain or dc offset
fluctuations), the phase method is more robust for small �.
This is illustrated in the inset of Fig. 2(b), which shows the
effect of 2% random gain fluctuations in the field data; this
amplitude noise clearly degrades the measurement of
h�r2

reli from g1, but does not affect the phase measurement.
By considering the joint probability distribution of N �

4 fields in Eq. (1) and by integrating out one phase and four
amplitudes, we have obtained an analytic expression for

the joint probability distribution of the first three phase
derivatives with evolution time P��0;�00;�000� [17], from
which the individual distribution functions P��0�, P��00�,
and P��000� can be computed. They depend on three pa-
rameters Q, R, and S that in turn relate to time derivatives
of the field correlation function g1��� at � � 0: Q �
�g001 �0�, R � ��g�4�1 �0� � g

00
1 �0�

2�=g001 �0�, and S �

f�g�6�1 �0� � �g
�4�
1 �0�

2=g001 �0��g=�g
�4�
1 �0� � g

00
1 �0�

2�. The fits
to the three distributions give the values of Q, S, and R
(Fig. 3). These in turn provide a sensitive probe of the early
time behavior of the particle motion, h�r2

reli in powers of
x � �=�DAWS: h�r2

reli � 324x2 � 57x4 � 3:3x6 �m2. We
emphasize that, by using this method, details about the
motion up to the 6th power in time can be retrieved, which
would be impossible from the conventional DAWS
method. Figure 3 also shows that both theoretical and
experimental distributions follow an asymptotic power
law decay with exponents �3, �2, � 5

3 [which suggests
��1� 2

n� for the nth derivative]. These slopes provide a fit-
independent test for CGS.

To investigate the evolution of the phase over longer
times, we study the cumulative (unwrapped) phase �c�T�,
which can be obtained by adding or subtracting 2� when-
ever there is a jump of �2� in the wrapped phase. The
cumulative phase can be defined as �c�T� �

R
T
0 �0� ~T�d ~T,

and is, by construction, a continuous random variable that
is no longer constrained to the interval ���;��. Its en-
semble average vanishes for fields described by CGS. For
sufficiently long time intervals, we expect the cumulative
phase shift ��c��� to approach the normal distribution
with zero mean [18]. Its variance is related to the cumula-
tive phase derivative correlation function, C�0 ��� 	
h�0�T � 1

2 ���
0�T � 1

2 ��i, which in CGS has the
simple analytic form C�0 ��� �

1
2 �lng1�

00 ln�1� g2
1� [19].
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FIG. 3 (color online). Comparison of theory and experiment
for the phase derivative distribution functions P���n��, where
n � 1, 2, or 3 denotes the nth derivative of � with respect to
evolution time T. From Q � 40 rad2=s2, we find �DAWS �
91 ms.

FIG. 2 (color online). (a) The universal relationship (solid
curve), calculated from Eq. (2), between the variance of the
phase shift along one path (y axis) and the measured phase of the
transmitted field (x axis). Dashed lines and dotted lines apply
when the phase is unwrapped, making the relation explicitly
dependent on the motion of the particles. (b) The relative mean
square displacement of the particles, h�r2

rel���i (left axis), de-
termined from the wrapped phase via the corresponding h��2

pathi

(right axis). We compare the results from the wrapped phase shift
distribution (�) and variance (�) with traditional DAWS
measurements (�). The inset shows the effect of amplitude
noise (see text).
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Figure 4(a) compares theory and experiment for C�0 ,
where predictions based on a simple empirical crossover
model for the particle dynamics are also included [7], for
which h�r2

rel���i � h�V
2
reli�

2=�1� �2=�2
c�. The best fit is

obtained for �c � 7�DAWS, showing that both �DAWS and
�c can be determined from C�0 .

The cumulative phase shift variance can be calculated
from C�0 since h��2

c���i � 2
R
�
0 d���� ��C�0 ��� [19].

Recalling the expression for C�0 ��� reveals that the vari-
ance of cumulative phase evolution is determined by g1

and its first two derivatives. This destroys the universal
relation with the path phase variance, but at the same
time this increases the sensitivity to details in particle
motion at long times [see Fig. 2(a)]. At short times, the
cumulative phase variance increases as a power law with
a logarithmic correction, h��2

c���i �
1
3 �

2=�2
DAWS�1:5�

ln��=
���
3
p
�DAWS��, while at long times, the cumulative phase

shift evolves as a 1D random process with finite diffusion
constant: h��2

c���i ! D��� [Fig. 4(b)]. For �c 
 �DAWS,
we find D�� �

4
3 �DAWS. The cumulative phase variance is

quite different from the path phase variance h��2
pathi,

which has a finite diffusion constant only if the particles
undergo Brownian motion, which they do not here. By
comparing measured and theoretical h��2

c���i in
Fig. 4(b), the accurate value of �DAWS � 89 ms was de-
duced from an appropriate translation along the x direction.

We have studied the phase evolution of ultrasonic waves
in strongly scattering, dynamic media. It is important to
discriminate the random phase evolution along one scat-
tering path, usually studied in D(A)WS, from the observed
phase evolution in a single speckle spot. Our experiments
are extremely well modeled by circular Gaussian statistics.
This theory accurately predicts the behavior of the wrapped
phase difference probability distribution, the variance of
both the wrapped and cumulative phase shifts, and the

phase derivative distributions and correlation function.
The excellent agreement of theory and experiment has
allowed us to relate the observed fluctuations in phase
evolution to the relative mean square displacement of the
scatterers. The phase statistics are sensitive probes of the
particle motion on both short and long time scales, and can
provide more accurate information than the more tradi-
tional field fluctuation measurements.
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